Standard Model: Getting There and Beyond

Bogdan Dobrescu

Theoretical Physics Department
Fermilab

Classical mechanics

- angular momentum $\gg \hbar$
- $\bullet \ \operatorname{speed} \ll c$

Quantum mechanics

- any angular momentum
- ullet speed $\ll c$

Special relativity

- angular momentum $\gg \hbar$
- any speed

Quantum field theory

- any angular momentum
- any speed

High Energy Physics has established that all known natural phenomena can be described by a local quantum field theory which is invariant under:

- 3+1 dimensional Lorentz transformations, SO(3,1), and translations.
- ullet $SU(3)_C imes SU(2)_W imes U(1)_Y$ gauge transformations

High Energy Physics has established that all known natural phenomena can be described by a local quantum field theory which is invariant under:

- 3+1 dimensional Lorentz transformations, SO(3,1), and translations.
- $SU(3)_C \times SU(2)_W \times U(1)_Y$ gauge transformations

→ all elementary particles belong to certain representations of the Lorentz and gauge groups:

Spin-1 bosons

Spin-1/2 fermions

$$\left\{egin{array}{lll} G^{\mu}:&(8,1,\ 0)\ W^{\mu}:&(1,3,\ 0)\ B^{\mu}:&(1,1,\ 0) \end{array}
ight. & \left\{egin{array}{lll} q_L:&(3,2,\ +1/6)\ u_R:&(3,1,\ +2/3)\ d_R:&(3,1,\ -1/3)\ l_L:&(1,2,\ -1/2)\ e_R:&(1,1,\ -1) \end{array}
ight.
ight.$$

Electroweak symmetry breaking

The vacuum is partially opaque to the W and Z.

 $SU(2)_W imes U(1)_Y$ gauge symmetry of the Lagrangian is spontaneously broken down to $U(1)_{
m em}$.

The ground state of our universe is a "superconductive" vacuum!

Parameters of a quantum field theory:

- masses (dimensionfull)
- couplings (dimensionless, $c = \hbar = 1$)

Experiments measure parameters

or discover new particles

or discover deviations from quantum field theory.

Examples of measurements:

- $\star \sin^2 \theta_W$ at NuTeV
- \star CP asymmetries in B_s decays at BTeV
- $\star \theta_{13}$ at MINOS
- $\star Br(K^+ \to \pi^+ \nu \overline{\nu})$ at CKM
- * ...

Examples of discoveries of new particles:

- **★** Top quark at CDF/D0 (Run I)
- * Tau neutrino at DONUT
- * Next bump in $\sigma(p\bar{p}\to\mu^+\mu^-X)$ in Run II, or in $\sigma(e^+e^-\to\mu^+\mu^-)$ at a future linear collider

Examples of possible deviations from local quantum field theory:

- * If MiniBoone will observe different oscillations for ν and $\overline{\nu}$: violation of CPT and perhaps non-locality (G. Barenboim, J. Lykken, hep-ph/0210411)
- * If black holes or winding modes will be produced at the LHC: quantum gravity at the TeV scale

* ...

Complications:

quantum field theory at strong coupling

Example:

BaBar discovery of a narrow resonance at 2.317 GeV in the $D_s^+\pi^0$ final state \Longrightarrow New particle! (April 12, 2003)

Heavy quark effective theory + model of chiral symmetry breaking in QCD (Bardeen, Eichten, Hill, hep-ph/0305049 - May 5): $c\bar{s}$ bound state - not a new fundamental particle.

 \Rightarrow there must also exist an excited D_s^{*+} state of 2.46 GeV ... discovered by CLEO (May 12, 2003).

"High-precision lattice QCD confronts experiment"

HPQCD, UKQCD, MILC and Fermilab Lattice Collaborations: hep-lat/0304004

Masses and matrix elements of long-lived hadrons: agreement to within errors of $\sim 5\%$.

If a new strongly coupled interaction will be discovered: theoretical predictions will require improved tools (e.g., nonperturbative effects of supersymmetric gauge interactions, ...)

Fundamental parameters

Mass scales:

- Electroweak scale: $\langle H \rangle \approx 174$ GeV (Vacuum expectation value which breaks the $SU(2)_W \times U(1)_Y$ symmetry; determines M_W, M_Z up to a gauge coupling)
- Planck scale: $M_P \approx 2 \times 10^{19}$ GeV (determines the strength of the gravitational interactions)
- Cosmological constant: $\approx 10^{-3}~{\rm eV}$ (sets the acceleration of the expansion of the Universe)

Gauge couplings:

- $g_s \longrightarrow \Lambda_{
 m QCD} pprox 100$ MeV
- $g, g' \longrightarrow \alpha_{\rm em}$, $\sin^2 \theta_W$

Fermion couplings to $\langle H \rangle$:

- $\lambda_u^{ij}, \lambda_d^{ij} \longrightarrow$ quark masses and CKM elements
- λ_e^{ij} \longrightarrow charged lepton masses

QCD θ parameter:

• coefficient of $G\tilde{G}$ in the Lagrangian: $\theta < 10^{-9}$ (leads to CP-violating quark masses; measured by the neutron electric dipole moment)

Neutrino masses and mixings:

• Either couplings of new particles (ν_R) to $\langle H \rangle$, or a new mass scale, $\frac{C_{ij}}{M_{\rm new}}(L^iH)(L^jH)$, or both?

Higher-Dimensional Operators

Suppressed by some mass scales $\gtrsim 1$ TeV If non-zero coefficients \Rightarrow "New Physics"

EXAMPLES:

$$\bullet \ \ \frac{C_1}{M_1^2} \left(\overline{l}_L^2 \gamma^\alpha l_L^2 \right) \left(\overline{q}_L^1 \gamma_\alpha q_L^1 \right) = \frac{C_1}{M_1^2} \left(\overline{\nu}_L^\mu \gamma^\alpha \nu_L^\mu \right) \left(\overline{u}_L \gamma_\alpha u_L + \overline{d}_L \gamma_\alpha d_L \right) + \dots$$

NuTeV measured a combination of $rac{C_1}{M_1^2}$ and $\sin^2 heta_W$.

$$\begin{array}{l} \bullet \ \ \frac{C_2}{M_2^2} \left(\overline{q}_L^3 \gamma^\alpha q_L^2 \right) \left(\overline{q}_L^3 \gamma_\alpha q_L^2 \right) = \frac{C_2}{M_2^2} \left(\overline{b}_L \gamma^\alpha s_L \right) \left(\overline{b}_L \gamma_\alpha s_L \right) + \dots \\ \\ \text{induces } B_s^0 \text{-} \overline{B}_s^0 \text{ mixing; to be measured by D0, CDF.} \end{array}$$

•
$$rac{C_3}{M_3^2}ig(\langle H
angle\sigma^iW^i_lpha\langle H
angleig)ig(\langle H
angle\sigma^i'W^{lpha i'}\langle H
angleig)}{
m shifts}\ M_W/M_Z$$
, changes the electroweak fits.

• . . .

What else can we expect?

Outline of the talk:

- What is the Standard Model
- What new particles could be there
- Towards new underlying principles

 $W_L^+W_L^-$ scattering:

Perturbatively:
$$\sigma\left(W_L^+W_L^- \to W_L^+W_L^-\right) pprox \frac{G_F^2\,s}{16\pi}$$

This makes sense only up to $\sqrt{s} \sim 1$ TeV.

At higher energy scales:

* A new particle: Higgs boson

or

* New strong interaction (perturbative expansion not valid)

or

* Quantum field theory description breaks down

Elementary particles "observed" in experiments:

leptons
$$\left\{egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \e$$

$$rac{SU(3) imes SU(2) imes U(1)}{8 ext{ gluons}} + W^\pm, Z, \gamma$$
 (spin 1)

longitudinal W^{\pm} , Z (spin 0)

Standard Model

Elementary particles "observed" in experiments:

leptons
$$\left\{egin{array}{c} egin{array}{c} \mu_L & \mu_L & \tau_L \\ e_R & \mu_R & \tau_R \end{array} \end{array}
ight.$$

$$rac{SU(3) imes SU(2) imes U(1)}{8 ext{ gluons}} + W^\pm, Z, \gamma$$
 (spin 1)

longitudinal W^{\pm} , Z (spin 0)

$$+ h^0$$
 (spin 0) yet to be discovered

Physics beyond the Standard Model

Quantum fluctuations tend to increase the vacuum expectation value of the Higgs field.

The stability of the electroweak scale requires a modification of the Standard Model at energy scales above ~ 1 TeV.

- ~ 500 B.C. Pythagoreans theorize that the Earth is round
- \sim 250 B.C. Erathostenes measures the Earth size with an error of a few %.
 - 140 A.D. Ptolemy draws the World map using a size smaller by 30%.

1482 A.D. World map:

1492 A.D. Columbus performs an experimental test, and concludes that the theory is correct ...

But in fact, he discovered something else!

Replica of the detector:

Supersymmetric Standard Model

Many new particles, many new parameters

→ prototype for "New Physics"

Nice theoretical features:

- ullet No quadratic divergences ($\langle H
 angle \sim M_{
 m SUSY}\,,\,\mu$)
- Gauge couplings unify
- Lightest superpartner is a dark matter candidate

• ...

Grand Unification

$$SU(3)_C \times SU(2)_W \times U(1)_Y \subset SU(5) \subset SO(10)$$

Fermions:

Minimal SU(5): too fast proton decays

Minimal SO(10): typically small ν mixing angles \Longrightarrow keep looking...

Vector-like quarks

 q_L, q_R : same gauge charges

Predicted in many models:

- "Top-quark seesaw" model (Dobrescu, Hill, 1997)
 - → Higgs doublet is composite
- "Little Higgs" models (Arkani-Hamed et al, 2002)
 - → no quadratic divergences at 1-loop
- "Beautiful mirrors" (Choudhury, Tait, Wagner, 2001)
 - ightarrow explains $A_{
 m FB}^b$;
 - \rightarrow signal in Run II: $b' \rightarrow bZ$ for $m_{b'} < 300$ GeV

Standard Mirrors: Best Fit

(From: Tim Tait JETP talk, May 2003)

$$M_1 = 200 \,\text{GeV}$$
 $Y_2 = 143 \,\text{GeV}$
 $m_H = 295.4 \,\text{GeV}$ $\sin^2 \theta_L^b = 0.00811$
 $\alpha_s(M_Z) = 0.116$

New neutral gauge bosons (Z')

Example:
$$SU(3)_C \times SU(2)_W \times U(1)_Y \times U(1)_{B-L}$$

(Appelquist, Dobrescu, Hopper, hep-ph/0212073)

 Z_{B-L} does not mix at tree level with the Z

Run I: $M_{Z_{B-L}} > 480 \,\, {\rm GeV}$ Could be discovered in Run II.

 \longrightarrow Gauge anomaly cancellation would then provide information about ν sector.

```
Energy
   "uncharted waters" ... "terra incognita" ...
        ... "New Physics" ...
                    energy frontier
                    Standard Model
200 GeV
                             h^0?
        Very weakly coupled new particles??
                        \tau
1 GeV
```

More dimensions

4D flat spacetime \perp one dimension of size πR :

Boundary conditions:
$$\frac{\partial}{\partial y}\phi(x,0) = \frac{\partial}{\partial y}\phi(x,\pi R) = 0$$

$$\implies \phi(x,y) = rac{1}{\sqrt{\pi R}} iggl[\phi^0(x) + \sqrt{2} \sum\limits_{j \geq 1} \phi^j(x) \cos iggl(rac{jy}{R} iggr) iggr]$$

Kaluza-Klein modes, $\phi^j(x)$: particles with momentum in extra dimensions

$$\Rightarrow$$
 massive particles in 4D: $m_j^2 = m_0^2 + rac{j^2}{R^2}$

Fermions in a compact dimension

Lorentz group in 5D \Rightarrow vector-like fermions:

$$\chi = \chi_L + \chi_R$$

Chiral boundary conditions:

$$\chi_L(x^\mu,0) \; = \; \chi_L(x^\mu,\pi R) = 0$$
 $rac{\partial}{\partial y}\chi_R(x^\mu,0) \; = \; rac{\partial}{\partial y}\chi_R(x^\mu,\pi R) = 0$

Kaluza-Klein decomposition:

$$\chi(x,y) = rac{1}{\sqrt{\pi R}} \Big\{ \chi_{R}^{0} + \sqrt{2} \sum\limits_{j \geq 1} \left[\chi_{R}^{j} \cos\left(rac{\pi j y}{L}
ight) + \chi_{L}^{j} \sin\left(rac{\pi j y}{L}
ight)
ight] \Big\}$$

Universal Extra Dimensions

T. Appelquist, H.-C. Cheng, B. Dobrescu, Phys.Rev.D64 (2001)

<u>All</u> Standard Model particles propagate in $D \geq 5$

Momentum conservation \Rightarrow KK parity is conserved

- ullet Bounds from one-loop shifts in M_W/M_Z and other observables: $rac{1}{R} \gtrsim 300~{
 m GeV}$
- Pair production of Kaluza-Klein modes at colliders: could be discovered soon!

(Cheng, Matchev, Schmaltz, hep-ph/0205314)

Lightest KK particle is stable in UED:

 $\gamma^{(1)}$ is a viable dark matter candidate

(from Servant, Tait, hep-ph/0206071)

Many other models in extra dimensions:

e.g., "Opaque branes" - localized operators (Carena, et al, 2002)

Six-Dimensional Standard Model

work with T. Appelquist, G. Burdman, E. Ponton, E. Poppitz, H.-U. Yee

D=6 (two universal extra dimensions) is special...

- ullet Global $SU(2)_W$ anomaly cancellation requires 3 mod 3 generations!
- Gravitational anomaly cancellation in 6D requires one right-handed neutrino per generation.
- \bullet 6D Lorentz symmetry allows ν masses only of the Dirac type.

Compactification of two extra dimensions

Square torus of radius R:

6D Lorentz symmetry broken by compactification:

$$SO(5,1) \rightarrow SO(3,1) \times Z_8$$

Dominant baryon-number violating processes:

$$p
ightarrow e^- \pi^+ \pi^+
u
u$$
 and $n
ightarrow e^- \pi^+
u
u$

$$au_p pprox rac{10^{35} {
m yr}}{C_{17}^2} iggl[rac{(4\pi)^{-7} 10^{-4}}{\Phi_5 F(\pi\pi)} iggr] iggl[rac{1/R}{0.5 {
m ~TeV}} iggr]^{12} iggl[rac{RM_s}{5} iggr]^{22}$$

Long-live the proton!

Message to everybody

- The fundamental laws of nature are very simple compared to the complexity of the universe.
- The fundamental laws of nature that we currently know may be approximations to a set of more profound principles which high-energy physicists could reveal by doing more research.
- The exploration of the energy frontier leads necessarily to discoveries!